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4.0 SAMPLING METHODS

4.1 Introduction

One of the weaknesses in ecology today is that too many inves t iga to rs
fail to realize the importance of sampling. A logical reason for this difficulty i s
that studies are often centered on one or two study areas, so that t h e
investigator tends to forget that he is in fact studying a sample from some
larger population. This may not be seen as a handicap until it becomes
necessary to attempt to extend the results of the study to the larger area. T h e
perceptive observer may then suddenly realize that there really isn't m u c h
basis for such an extrapolation, unless he does in fact have data from a
number of subareas (i.e., a representative sample) on which to base t h e
extrapolation and to provide a basis for assessing its validity.

The intent here is to provide a brief overview of sampling methodology.
Most of the material follows the lines of survey sampling methods, as given i n
much more detail by Cochran (1977). Thompson (1992) includes methods o f
particular interest in ecology. The very basic features are those of a n
elementary statistics course. Most students will prefer to refer to f a mi l i a r
textbooks for these aspects. The essential material has to do with some
elementary statistical concepts and a few standard distributions, mainly t h e
binomial, hypergeometric, Poisson, and normal. Students not familiar w i t h
these distributions and the basic rules of probability should look them up i n
one of the elementary references. A brief sketch of the statistical b a c k g r o u n d
appears also in Chapter 1.

 4.2 Simple random sampling

The main complication in defining simple random sampling is one o f
defining the meaning of the word "random". Our approach is that o f
probability theory, in which it is assumed that every sampling unit (some s o r t
of explicitly defined entity) has the same probability (chance) of being d r a w n
into the sample. The mechanics of drawing a random sample then depend o n
giving each unit the same chance of inclusion in a sample while keeping t h e
choices independent of one another. The standard procedure is to assign a
number to each unit in the population, and to refer to a table of r a n d o m
numbers as a device for selecting the sample.

Once the sample has been drawn and measurements made on the samp le
units, various problems of analysis of the data must be dealt with. However ,
procedures for analysis of the data need to be considered well in advance o f
the sampling to be sure that the right kinds of data are collected. That is, t h e
investigator must first prepare a sampling plan, which designates exactly h o w
the sample will be obtained. Secondly, there should be a definite plan for t h e
analysis of the resulting data, specifying what statistical analyses will b e
carried out, and what will be done if a particular kind of result is obtained i n
the analysis. Many of the problems in field research are caused by the lack o f
such a study design. It may be objected that one cannot produce such a plan i f
it is not known in advance how the study will turn out. There are s e v e r a l
answers to this objection. One is that few studies are conducted in comple te ly
new situations. Usually there are previous investigations that can be used i n
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the design stages, and data that can be used to test both the sampling plan a n d
the analytical procedures.

4.3 The finite population correction

The estimated variance of a mean for sampling without r e p l a c e m e n t
from a finite population is:

                     s2(x
_
 ) = 

s2

n   [ 
N  -  n

N   ] =  
s2

n   [ 1 - 
n
N  ]                                                      (4.1)

 
 and the finite population correction is just the quantity in brackets, or o n e
minus the fraction of the population actually sampled (frequently des ignated
as f). Thus when nearly all of the population is taken into the sample, t h e
variance of the estimated mean becomes very small, as it logically should.

When the fraction of the population sampled is small, this equa t i on
implies that size of the population has little effect on the standard error a n d
thus on confidence limits. This is a result that comes as a surprise to m a n y
people, who intuitively suppose that bigger samples are required for v e r y
large populations. This is, however, simply not true. A large population may, o f
course, offer more logistic problems in sampling and thus be more expens i ve
to sample.

As a general rule of thumb, when the sampling fraction is less t h a n
about 5%, it is customary to neglect the finite population correction factor, a n d
treat the sample as though it had been obtained by sampling w i t h
replacement. Sampling with replacement refers to circumstances w h e r e
objects can be drawn from the population one at a time and replaced b e f o r e
the next object is drawn. With such a process, probabilities remain un c h a n g e d
as the drawing proceeds, making calculations much simpler than i f
replacement does not occur, when removal of one individual changes the odds
on selecting others in the next draw.

Students whose statistical training has come from courses in w h i c h
hypothesis testing was mainly emphasized may not have encountered t h e
notion of a finite population correction. This is because most tests o f
hypotheses are formulated on the basis of sampling from an infinitely l a r g e
population, or on the basis of sampling with replacement.

 4.4 Confidence intervals

Ideally, one would like to be able to know how far "off" a p a r t i c u l a r
estimate is from the true parameter value. Statistical methods offer no s u c h
utopian result, and the best that we can do is to make probability s ta tements
that apply to the long-run of future trials, or to some hypothetical popu la t ion
just like the one currently under study. These take the form of con f i dence
limits, which are a statement of the following kind:

                                           Pr{X L < µ <  XU} = 1 - α                                                       (4.2)  

 where XL denotes the lower confidence limit, XU the upper, and t h e
probability that the true, but unknown, value (µ ) of the random variable o f
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interest will fall between these limits is 1 - α . The proper interpretation of t h i s
statement is that a very large number of repetitions of the "experiment" a t
hand would yield confidence limits that include the true, but unknown, µ in a
fraction 1 - α  of the trials. It must be emphasized that the statement cannot b e
interpreted as pertaining to a single set of sampling results that are in h a n d .
Such a statement would be ridiculous because the confidence interval t h e n
either includes the true value or it does not, and no probability is i nvo l ved - -
it's just that we have no way of knowing where the true value lies. Hence w e
have to adopt some sort of long-run view of the "odds on being right."

One of the most common mistakes in reporting the results of a stat ist ical
analysis is to assert that "the probability is l - α  that the hypothesis is false".
Just as with the confidence limits statement above, a testable hypothesis i s
either true or false, but there is no need for statistical analysis if one k n o w s
the answer.  If the answer is not known, then the statistical approach a t tempts
to supply some quantitative assessment of the "odds" for and against t h e
hypothesis.  The problem that many people have with this is that they h a v e
been admonished from childhood to  "make up your mind". Such decis ions
should be stated as a belief based on the evidence, but announced sepa ra te l y
from the probability statements used to assess the evidence.

Most investigators tend to use confidence limits that are s y m me t r i c
about the estimate. No doubt this is a consequence of the common use of t h e
symmetric normal distribution, which leads one to tend to cut off about α /2 o f
the probability distribution on each side of the mean, and thus get s y m me t r i c
limits.  In point of fact there is nothing in theory or practice that says that t h e
limits should be symmetric--all that is required is that there be 1 - α  of t h e
distribution within the limits.   Also, setting limits for a distribution like t h e
Poisson is likely to result in asymmetric limits.  One reason is the difficulty o f
cutting off an exact fraction (α ) of the distribution when one must set t h e
limits in terms of integer values.  This difficulty can quickly be appreciated b y
trying some examples with tables of the Poisson distribution.

For ease in understanding and remembering the procedure f o r
obtaining confidence limits, we will use the standardized or unit normal c u r v e ,
and reverse the usual process of going from some other normal distribution t o
the standardized--that is we now look up a value (z) in tables of the u n i t
normal that cuts off the desired proportion, α , of the distribution.  If α  is to b e
0.05, then we find z = l.96, and

 where Xc represents upper or lower confidence limit respec t i ve l y
corresponding with the plus and minus signs on the right hand side of t h e

equation. Thus we have Xc = µ + 1.96 σ / n   and the probability s ta temen t  
previously given is satisfied by the corresponding choices of Xc (which are XL

and XU ).  In practice, it is necessary to substitute  x-   for µ .

X

n

c − = ±µ
σ 1 96.                                                                        (4.3)
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The above results assume that one knows σ, which is almost always n o t
the case.  If the sample size is about 30 or more, it really doesn't matter m u c h ,

in that s/ n   then provides an adequate estimate of the standard error

(σ / n ).  If sample size is small, then it is preferable to use tables of the "t"
distribution (instead of the unit normal distribution), which make a l lowance
for uncertainty about the variance. Values of the t-distribution are ava i lab le
in EXCEL.

One also needs to bear in mind that the estimate of σ (usually denoted b y
s) that is appropriate depends on what quantity one is setting limits on.  For a
mean, we proceed as above, but if limits on a single observation are to b e

secured, then we naturally use the standard deviation, s, in place of s/n   .

Example 4.1  Calculating confidence limits

For "95 percent confidence limits" (α = 0.05), many people round

1.96 to 2.0 so that the limits can be calculated from xc  = x
_ 

 + 2 s / n .  

Suppose s = 9, n = 16 and x
_ 

 =10.  Then we have xc = 10   +   2(9)/4, which
can be expressed as 5.5 < µ < 14.5.

 4.5 Determining sample size

Determining the sample size required to provide confidence limits o f
preassigned width on a mean is again a matter of using the z values. From t h e
results above we have:

                              +  
zs

n
  = Xc - µ   and we let D = | µ - Xc |   

where the vertical lines denote "absolute value of...", so that D amounts to t h e
half-width of the desired (symmetric) interval. Hence:

                                                          n = (zs/D)2                                                         (4.4)

Another way to approach sample size estimation is to express D relative to t h e
m e a n :

                                                          D/x
_
   = 

zs

n  x
_ 

 so that
                                                   n = [z(c.v.)/D(%)]2                                                   (4.5)

where c.v.= s/x
_ 

 is the coefficient of variation, and D(%) = D/x-   expresses D as a
proportion (note that D(%) is used as a proportion, NOT as a percentage).  T h e
utility of this approach is that we often have an idea of the coefficient o f
variation, but may not know what the mean is likely to be, so it is possible t o
set proportionate limits this way.  The advance specification can then be, f o r
example, that "I want 95% confidence limits no wider than + 20 percent of t h e  
mean" .
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When sampling without replacement is important (i.e., when the samp le
is likely to be a significant proportion of the population,say, 5% or more) t h e
above relationships serve to get an approximate value of the sample size
needed, which can be labelled no.  The final estimate of n is then ob ta ined
f rom:

                                                              n = 
no

1  +  
no
N

                                                     (4.6) 

 This estimate results from using a variance estimate that includes the f i n i t e
population coefficient as previously described (Equation 4.l).

Example 4.2 Determining sample size

Suppose we want smaller (narrower) confidence limits, say 8 < µ <
12, in Example 4.1. Using Eq.(4.4) D = 2, and n = [2(9)/2]2 = 81.  If an
appreciable fraction of the population is to be sampled, then the above
result needs to be corrected by using Eq. (4.6).  Assume N = 100, then
we have n =  = 81/(1 + 81/100) = 44.8, which may be rounded to n = 45.
Suppose it is required that D(%) = 0.1 for an approximate 95% confidence

interval of   +   20%. Then D(%)=0.1=2(9)/10 n , and n= 324, which exceeds
the supposed population size of N=100. But Eq.(4.6) gives n=76.

4.6 Stratified random sampling

Almost invariably, ecologists have some advance information abou t
populations that they wish to sample.  This prior knowledge may well be one o f
the reasons for rejecting random sampling and substituting some sort o f
purposive selection, wherein one chooses sampling units that "look" t obe
representative or typical.  There are, however, methods that take into a c c o u n t
advance knowledge and at the same time provide the protection against b i as
that is given by random selection.  One such method is to classify all of t h e
population units into one of several strata (groups), and to then take r a n d o m
and independent samples in each such stratum.  

The name, stratified sampling, comes from the close analogy to t h e
layering effect seen in various circumstances, since we normally attempt t o
have the strata represent gradations in value of the random variable o f
interest.  If one can do a fairly good job of segregating units by magnitude o f
the random variable under consideration, then it is apparent that t h e
variability to be encountered in sampling within a particular stratum may b e            
substantially reduced over that without stratification.  Hence greater ove ra l l
precision results for a particular total sample size.

Stratified sampling will require somewhat more advance effort t h a n
simple random sampling, but the usual result is that it turns out to be less e x t r a
effort than one might suppose.  The method provides some side benefits i n
terms of better understanding of the material being studied, and of the n a t u r e
of the problem dealt with.  In some circumstances it may be that a portion o f
the sampling units in the population are very difficult to reach, or o the rw i se
expensive to sample.  In this case, stratification can specifically t a k e
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differences in cost into account, and provide alternative sampling s c h e m e s
aimed at getting the most information for the effort expended.

The material here is devoted to an exposition of the basic technology i n
stratified sampling.  Many additional features will be found in texts like that o f
Cochran (l977) and Thompson (1992). Here we will deal with such things a s
how to go about stratifying a population, the estimation procedures, va r i ous
equations for obtaining variance estimates, and determining sample size.

 4.7 Mechanics of stratification

Undoubtedly the most common ecological appli cation of s t ra t i f ied
sampling has to do with locating sampling plots or other m e a s u r e m e n t
schemes on a map of a region of interest. The process of stratification is t h e n
intuitively obvious--one finds a way to break the map up into strata, each o f
which is composed of some large number of individual sampling units, usua l l y
plots of square or rectangular shape.  It might be noted that the units in o n e
particular stratum do not have to be contiguous--this is in fact one of t h e
primary advantages of stratification.  However, it is advantageous to keep u n i t s
in a stratum more or less contiguous if the survey is designed for ana ly t i ca l
purposes (e.g., to make comparisons between strata).

The basic process is just to assign units to strata according to t h e
available prior information, seeking to get the units in any one stratum a s
much alike as possible in terms of the random variable or variables b e i n g
studied.  The next step is to assign serial numbers to every unit in e a c h
stratum.  This does not, of course, require that someone write down all t h e
numbers--all that is required is a trustworthy scheme for assigning a n d
fi nding again any particular number.  Often it will turn out to be simplest t o
delineate stratum boundaries with colored pencil and to note the starting a n d
ending point of each row of units in a given section of one stratum by w r i t i n g
the corresponding numbers on the map.  Sometimes large blocks can b e
counted as the equivalent number of sampling units, that is sampling u n i t s
might be mil-acre (or meter-square) plots but the strata may be made up o f
larger units.  A little practice soon settles the details for any particular set o f
condi t ions.

We use the following notation, which follows that of Cochran (l977) f o r
convenience in referring to the much more complete description ava i lab le
t h e r e .

N h  (h = 1, 2,..., L)          The number of units in the stratum.  There are L strata
     in all, and N = N1 + N2 + ... + NL

nh                                    The number of units in the hth stratum that are   
        selected for enumeration (a random sample

    of nh units from the hth stratum).  In most 
     circumstances nh should be at least 4.
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yhi (i = 1, 2, ..., nh)      The observed value of the random variable (Y) on the       

     ith unit of the hth stratum.  There are nh such 

               observations taken from the hth stratum.

Wh =  
Nh
N                          The proportion of the total units present in the hth 

      stratum (N units in population; N1 + N2 + ... + NL  = N).

 y
-
 h = Σ  yhi/ nh            Average of the sample units from the hth s t ra tum.

 fh = 
nh
Nh

                          The sampling fraction in the hth stratum (i.e., the

                                      fraction of the units in the hth stratum that are actually
                                      examined.

 4.8 Estimates from a stratified sample

Since the Wh represent the proportion of the total population in the ht h

stratum, they are logical weighting factors for estimating the ove ra l l
population mean.  The equation is:

                              y-  st = w1y-  1 + w2y-  2 + ... wL y-  L                                                    (4.7)

 where y-  st refers to the mean of a stratified sample.

 By the rule for variance of a linear combination of independent r a n d o m
variables (independent because of the random sampling in separate strata), w e
have the variance of the estimate as:

                 V(y
-
 st) = w12V(y

-
 1) + w22V(y

-
 2) + ... + wL2V(y

-
 L )                                (4.8)

This result assumes that the sampling fraction ( fh) in each stratum is sma l l
enough to neglect the finite population correction.  If the fpc is included, t h e
equation for variance in the hth stratum is:

where S2h is obtained from:        

V y
S

n

N n

N

S

n
fh

h

h

h h

h

h

h
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( )
[ ]= − = −

2 2

1                              (4.9)

S y y Nh hi
i

N

h

h
2

1

2 1= − −
=
∑( ) /( )                                   (4.10)
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These two equations can be combined to get the desired result:

                                                                

                 However,  Sh2 is not a quantity that can be determined f r o m

sampling, being the variance of the entire population in the ht h stratum.  A
logical procedure is to estimate it from:                     

which is the usual variance estimate for a simple random sample. The last t e r m

in the equation for V(y
-
 st) is the finite population correction so if all of the fh

are small (say, less than 5%) this term can be dropped

4.9 Confidence limits

When sample sizes in the several strata are all substantial, t h e
confidence interval takes on the same form as we have p rev ious l y
encountered it for simple random sampling, and can be written as:

                                                             y
-
 st + z s(y

-
 st)    

 where z is the value from the unit normal curve corresponding to t h e

confidence level wanted, for example z = 1.96 for α = 0.05.  We now use   s2( y
-
 st)

or, in this case its square root, to denote that this is an estimate of the t r u e
variance given by Equation (4.11).

When sample sizes for individual strata are small, as is not u n c o m m o n l y
the case, there is a difficulty brought in by the fact that use of z corresponds t o
virtually knowing the true variance.  As was noted earlier, samples of 30 or so
give close enough estimates that one does not need be too concerned about a n
effect on the confidence limits.  With only a few observations in one or m o r e

strata, however, the estimates of stratum variance ( sh
2) may not be so p rec ise ,

and this situation would usually be handled by substituting a "t" value for the z
value, that is, by making use of the t-distribution, which allows f o r
uncertainty about the variance estimate. The trouble here is that we need t o

combine the several stratum variances to estimate V ( y
-
 st), but it is not p r o p e r

to average the various "t" values corresponding to stratum sample sizes ( w e
would ordinarily look up a t-value with nh -1 degrees of freedom for e a c h
stratum). Cochran (l977:96) and Thompson (1992:106) give a rather compl icated
expression for calculating an "effective" number of degrees of freedom for u s e
in this case.

V y W S n W S Nst h
h

L

h h h
h

L

h( ) ( / ) /= −
= =

∑ ∑2

1

2

1

2                              (4.11)

s y y nh hi
i

n

h h

h
2

1

2 1= − −
=
∑( ) /( )                                 (4.12)
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Example 4.3 A caribou census

An example that incorporates nearly all of the basic elements in
stratified random sampling is furnished by an aerial census of Alaskan
caribou.  Details will be found in a paper by Siniff and Skoog (1964).
We here extract that part which is appropriate for illustration.  Six
strata were selected on the basis of preliminary observations of
relative caribou abundance, and delineated on detailed maps.  Sampling
units were four-square-mile blocks, and each such unit within each
stratum was assigned a number.  There were no advance estimates of
within-stratum variances available, so the stratum standard deviations
(Sh) were assumed proportional to the preliminary rough estimates of
population levels in the stratum.  This provided the following data for
allocation according to Equation (4.14):

Stratum        Nh          Wh         Sh       
Whsh

ΣWhsh
         nh(opt.)       nh (actual)

A                    400      .572   3000  .428              96      98
B     30      .043    2000      .022                5       10
C     61     .087   9000     .195              44     37
D                18     .026   2000     .013      3       6
E                70       .100    12000  .299    67    39
F               120      .172      1000      .043               10     21
            ____     ____      ____       _____           _____              _____
                     699      1.000    29000     1.000             225                   211

The "optimum" allocation was based on the total number of sample units
(225) that the investigators believed could be surveyed in the time
available.  The actual allocation amounted to "hedging" against
uncertainty about the likely values of Sh.  Thus there were several
strata (B, D and F) where the supposed optimum allocation called for
rather small samples, so these were increased at the expense of strata
(C and E) where the optimum plan called for censusing a substantial
fraction of the units in the stratum.  Survey results were as follows
(Nh, Wh were as used above, and nh as given in the last column above):

Stratum        y
_

 h                         sh
2           

W s

n
h h

h

2 2

             Whsh
2          y

_
 hWh               

A     24.1    5,575   18.613  3,189   13.79
B     25.6                 4,064   .751     175     1.10
C     267.6   347,556 71.098  30,237  23.28
D     179.0      22,798  2.569                   593        4.65
E     293.7   123,578 31.687  12,358    29.37
F     33.2                    9,795   13.800  1,685       5.71
        _______  ______  ______  ______  ______
        -            -       138.518 48,237  77.90

From Equation (4.7),  y
_
 st is the sum of the last column above, or 77.9

caribou per four-square-mile unit.  This is readily converted to a total
for the area surveyed by multiplying by the total number of units,
giving (77.9)(699) = 54,450 caribou.The variance estimate (Equation
(4.11) is:
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                    L                                  L

   v(y
-
 st) = Σ (W h2 Sh2)/nh  - Σ W hSh2/N = 138.518 - (48,237/699) = 69.51

                  h=1                              h=1

 Confidence limits on the mean may be obtained by assuming z to be equal
to 2 (or 1.96 to be exact, for α = 0.05), since rather substantial
samples are involved here, in most strata, giving:

 y
-
 st =   +   2(69.51)

1/2  or 77.9   +   16.7 caribou per four-square-mile unit.

For total caribou on the study area, we estimate the variance as:

v(ytot) = N2 v(y
-
 st) = (699)

2(69.51) = 33,962,655

 and limits are:

       54,540   +   2(33,962,655)1/2     or    42,885   <    xtot  <  66,195.

Notice that sh
2 increases with increasing yh in the table above.

The investigators plotted log10 (sh
2 ) against log10 y

-
 h (Siniff and

Skoog, 1964:398) and obtained a regression relationship:
                                y = 1.63 +1.42 x

where y = log10 (sh
2 )  and x = log10 y

-
 h.  This is equivalent to the

relationship:

                                 sh
2 = 42.66(y

-
 h)

1.42

which might be used to estimate variances in planning similar surveys.
However, it is important to remember that size of the sampling unit (4
sq. mi. in this case) will affect such a relationship.

Example 4.4 A mortality survey

A Michigan study of over-winter losses of whitetailed deer
(Whitlock and Eberhardt, 1956) provides an example where the finite
population correction is negligible.  In this case, nearly 19,000 square
miles (all of the northern lower peninsula of Michigan) were classified
into five strata on the basis of estimates made by field biologists.
The primary units were half-sections (one-half square mile), but these
were subsampled in the actual search by using a strip 88 yards wide laid
out as a rectangular course 1/2 mile long and 1/4 mile wide. Width of
the strip was based on use of four-man teams, with each individual
responsible for searching a 22 yard wide interval.  Various
complications were involved in the design inasmuch as it was necessary
to consider prospects for missing dead deer on the strip, the number of
men available in various locations (and transportation), the necessity
for one man to act as compass-man, need for a biologist in each crew,
and so on.

Advance data from a previous survey of an area of high mortality

suggested that the coefficient of variation (s/x
-
 )  might be about 1.30,

so estimates of Sh were obtained by multiplying 1.3 times an estimated
number of deer to be found on each plot (these guesses were made in the
process of setting up strata).
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It was decided that about 110 plots could be surveyed with available
manpower so the allocation was devised as follows:

Stratum    Expected   Expected losses  Square     Wh    Estimate    Preliminary               
                 losses per expressed as      miles in               of Sh         allocation
                 sq. mile    dead deer/plot                  stratum                                ___     ______      _________               

I        20+     3.75           408             .0220       4.88              23
II     10-20  1.88         1,048            .0566        2.44             29
III   5-10    .94        2,293.5         .1240        1.22             32
IV     1-5     .31         5,567.5         .3010         .40              25
V      0-1     .01         9,181.5         .4964         .01                1
                 ______   _______                    ______
                                                           18,498.5       1.0000                          110

The allocation again followed Equation (4.14) but four plots were
added to stratum V, giving 114 in all, of which 113 were actually
searched (one plot was completely flooded at the timeof the survey).
Survey results were:

Stratum       nh        sh            y
-
 h     Contribution to   Coefficient of    sh

2/ y
-
 h

_______       ___       ___        ____     to V(y
-

         s t  )                   variation                  _______                 

 I     23      2.146     1.826      .000097            1.18     2.52
II              29      1.082       .621       .000129            1.74     1.88
III              31      .724         .484       .000260            1.50     1.08
IV              25      .541         .280      .001062            1.93     1.04
V                 5       --             0.00      .00           --             --
              ______                              _________
                    113                                    .001548

In this instance, only very small fractions of each stratum were
searched so Equation (4.11) reduces (by dropping the right-hand term)
to:
                         5

        v(y
-
 st) = Σ (W h

2 Sh
2)/nh

                       h=1

and the individual terms are listed under the heading "Contribution to

v(y
-
 st)" so that one can see in which stratum most of the variability

turns up.  Comparing the expected losses and the  y
-
 h, it becomes

apparent that the over-estimates were largely in strata I and II, which
was not especially surprising since the winter turned out to be milder
than anticipated when the survey was planned, and starvation losses were
correspondingly lower (major starvation areas nearly all were in strata
I and II).

The coefficients of variation in the above table show the advance

estimate to be somewhat low.The last column of the table gives  sh
2/ y

-
 h
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 which is the "index of dispersion" and is unity (within sampling or
"chance" errors) for a Poisson distribution. This suggests that such a
distribution (i.e., wholly random dispersal of dead deer) may apply to
strata III and IV, in which case the Sh for allocation might simply have
been taken as equal to the square roots of the expected numbers of deer
per plot.

 4.10 Allocating the sample to strata

We have thus far gotten the cart before the horse, having cons idered
how to analyze sample results without considering how the total sample o u g h t
to be distributed over the strata.  Two kinds of allocation are in common use.
The first is perhaps what one would expect to do without any a d v a n c e
information about the variability in various strata, that is, distribute t h e
sample in proportion to the size of the strata ("proportional allocation").  Th is
is also known as a self-weighting sample, since fractions going into e a c h
stratum will be equal to Wh, so that a simple mean of all of the sample resu l t s
will be equal to the weighted mean previously given.  In this case we h a v e
nh/Nh = f = n/N so that the sampling fraction is the same in all strata.This leads
to a simpler expression for the variance:
                                                                L

                                  V(y
-
 st) = 

1  -  f
n    Σ WhSh

2                                                   (4.13)

                                                              h=1

 and we again have to substitute sample estimates for Sh
2  .

Proportional allocation is easy to accomplish and to analyze, but often i s
not a very efficient way to use sampling resources.  In most ecological work i t
turns out that the variance and mean tend to increase together, so that t h e
strata likely will have rather different variances, and proportional a l locat ion
will t hen undersample some strata and oversample others.  An a l locat ion
which allows for the effect of differences in stratum variances is the s c h e m e

called "optimal allocation". This method can be shown to minimize V ( y
-
 st) for a

fixed n. Optimum allocation is given by the following relationship:

                                                                        L
                                               nh = nWhSh / Σ W hSh                                               (4.14)
                                                                       h=1
 Of course use of the formula demands at least a guess at the Sh.  In m a n y
studies, there will be some preliminary information about the magnitude o f
variances to be encountered, quite often in the form of coefficients o f
variation, which may be applied to the expected stratum means to get a n
estimate of stratum standard deviations.  It also turns out that this kind o f
allocation is not too sensitive to errors in advance estimates of Sh so one c a n
usually expect to do a better job with this method so long as the s t r a t u m
variances do differ appreciably and the guessed values of Sh are in the r i g h t
"ballpark".In many natural populations the stratum with the lowest mean c a n
be expected to have roughly a Poisson distribution of individuals ( a s s u m i n g
the purpose of the survey is to estimate total individuals) so the i nves t i ga to r
can set that variance equal to the expected mean density, and go on from t h e r e
on the basis of any information about how variability increases with t h e
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means of the remaining strata.

One further feature of allocation worth considering here is t h e
circumstance where sampling costs differ among strata. Perhaps the s imples t
assumption is that total cost of thesampling can be written as:
                                                                       L
                                                  cost = co  +  Σ chnh                                                (4.15)   
                                                                     h=1
where ch represents the cost of measuring each sample unit in stratum h, t h e
ch are not all equal, and co is a fixed or "overhead" cost.  In this case, C o c h r a n
(l977:97) shows that the allocation should be:
                                                                          L

                                                 nh = 
nWhSh

ch
 /Σ W hSh/ ch                                      (4.16)  

                                                                        h=1
 so that the number of samples in a stratum depends on the stratum size, i t s
variability, and cost of sampling.  One takes more samples in large a n d
variable strata, but also increases sample size if sampling is cheap in t h e
stratum.This kind of allocation can be rather useful in dealing with s a m p l i n g
problems where either access or measurement may be quite difficult for p a r t
of the population.  It is worth noting that other kinds of cost functions m i g h t
be obtained from knowledge of the sampling problem, and special a l locat ions
then devised.  Cochran (l977) discusses "cost functions" for va r i ous
c i rcumstances .

Example 4.5 A deer population estimate

Counts of "pellet-groups" have been used to estimate deer
populations for many years.  Daily defecation rates are remarkably
constant (about 13 groups per day) and over-winter accumulations of
pellets can be identified by the underlying mat of leaves dropped the
previous fall.  There is thus a straightforward conversion from numbers
of pellet-groups to "deer-days" which in turn can be converted to
average population levels for the over-winter season.  Stratified random
sampling has been used to conduct such surveys in northern Michigan for
more than 25 years.  About 35,000 square miles are surveyed, requiring
on the order of 500 man-days of effort.  Some nine separate areas (Game
Management Districts) are surveyed independently.  An example for one
such are (District 7 in 1962; Ryel 1971:131) appears in the following
table:

Stratum    Area (               sq.mi.)     Prop                        .(Wh              )      nh       y
-
 h         

W h2sh2

n h       

I     190     .0541                9       65.22       1.7568
II    425     .1211               12      29.25       1.2649
III   1544    .4399               34      15.35       1.7803
IV   1144    .3259               10      10.70       1.7748
V     207                 .0590                 1       0.0            --
        _______ _______ _______ _______              ________
        3510    1.0000  66         -          6.5768.

The overall weighted mean number of groups per sampling unit was
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  y
-
 st =   17.31 with two standard errors being 29.6 percent of that

estimate. With the very large areas involved, an appreciable amount of
time is expended in traveling to the sampling units.  Since experience
shows that the individual plots should not be very large (to avoid
missing groups in the counts), a cluster sample is used at each site,
comprised of eight individual plots arranged along a half-mile line. For
convenience, square miles (sections) serve as the primary sampling unit,
with a random starting place and distance from the boundary used to
locate each systematically arranged cluster of plots.

To reduce the effort required to plan and execute these large-
scale surveys (150 to 200 people may be involved annually), the same
plots have been used for a number of years in succession. This makes it
possible for the field men to plan their work efficiently, since they
know the plot location well in advance and can anticipate just when the
plots will be accessible (and free of snow). Ryel (1971:222) calculated
the optimum allocation for a number of years. Results for the District
used as an illustration above are:
                  

                                 Calculated optimum allocation                                                                           
Stratum       Actual               
               allocation  1959                       1960            1961            1962             1963             1964                  

I     9       18        14         6          13         4         6
II    12      11        14        21         13        19       18
III   34      27        29       21          26        32       32
IV    10     9           9        18          14        11       10

It can thus be seen that the original allocation was, on the average,
quite satisfactory. Two kinds of factors may affect these results. One
is that the distribution of deer may change somewhat from year to year,
in consequence of winter weather conditions. Another is that variances
for each stratum are estimates, and thus will vary somewhat due to
chance alone.

4.11 Further remarks on stratified sampling

Cochran (1977), Thompson (1992), and other texts on survey s a m p l i n g
supply a good deal of auxiliary information on methods and techniques f o r
various special cases.  A few points that are examined in more detail in t h o s e
references are summarized here:

 (1) Gains in stratified sampling for the estimation of a proportion are usua l l y
not sizable unless the proportion (P) varies sharply from stratum to s t ra tum,
and in most cases, proportional allocation is preferable.

(2) Many surveys are designed to measure more than one random va r iab le ,
whereupon the question of allocation gets complicated. An initial approach i s
to calculate allocation for the variables of main interest separately a n d
determine whether the several allocations differ appreciably.  If so, then i t
may be possible to devise some sort of cost function to help in a decision.  I f
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there are two variables of main interest, then there are some handy s c h e m e s
for handling the two in a single allocation.

 (3) We have not considered how to determine either the number of strata n o r
stratum boundaries.  Most studies of natural populations will involve t h e
location of strata on maps, and the quantity of advance information on t h e
population will usually be such that the number of strata probably will not b e
less than three nor more than six.  A few trial efforts at laying out strata w i l l
usually resolve most questions of boundaries. Probably the major d i f f i cu l ty
comes up if large areas are to be covered, so that there are a number of peop le
involved, each having rather good local knowledge.  Then the principal j o b
turns out to be in getting individuals to agree on what constitute de f in i t e
strata, and how they should match at the junction of two districts w h e r e
different people are locally "expert" on the subject matter.  Some one p e r s o n
usually has to umpire the decisions, and this can perhaps be done a f t e r
individuals have made up maps reflecting their knowledge.

 (4) Sometimes it is possible to make use of stratification after a simple r a n d o m
sample has been taken.  It must be emphasized that stratification c a n n o t
legitimately be undertaken on the basis of examining the sample results, but i t
may turn out that it is not possible to assign individual units to strata u n t i l
after they have been surveyed, that is, the total number of units in e a c h
stratum may be known in advance, but the stratum to which a p a r t i c u l a r
sample unit belongs cannot be determined until the measurement is made.

 (5) Most experience with natural populations shows that variability i n c r e a s e s
with the mean.  This is fairly sound grounds for recommending t h a t
"optimum" allocation always be carefully  considered before selecting one o f
the other possibilities.

4.12 Ratio Estimation

The main results for ratio estimation require that the population total o f
an auxiliary variate (X) be known, and the correlation between X and t h e
variable of main interest (Y) is used along with the known total to obtain a n
estimate of either the mean of Y or its total with greater precision than may b e
obtained from simple random sampling of Y alone. So far, ratio and r e g r e s s i o n
methods have been little used in ecology and resource management su rveys ,
partially perhaps because of a lack of suitable correlated variables w i t h
known totals, but also because many investigators are not familiar with t h e s e
methods.

In the usual notation, X is used to represent the known population total.
Since we have been using X to represent a random variable, XT will denote t h e
population total here. The ratio estimate is:

                                          Y
^

 R  = 
Σyi
Σxi

  XT =    
y
_

x
_  XT

 as an estimator of the population total for Y.  The mean value of Y is est imated
by replacing the population total (XT ) by the mean above.
The population ratio is estimated by:
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                                            R^   = 
Σyi
Σxi

 

If interest is principally in the population ratio, then it is not necessary t o
know XT.

An important application of ratio methods is worth mentioning here i n
order to provide an illustration of the nature of the above relationships.  Th is
is the use of "strip transects" (discussed in more detail in Chap.5) o n
irregularly-shaped areas.  A strip transect is just a long, narrow p lo t
extending completely across a study area.  For present purposes, we assume
that all of the objects of interest are counted on each of a number of s t r ips .
Each such transect then constitutes a sample plot.  If the region under study i s
rectangular in shape, then each sample plot will have the same area, and n o
adjustment is for transect length is needed.  However, in most p rac t i ca l
situations, study areas will be irregular in shape.  Strip transects across such a
site will thus have different individual areas, presenting a problem in t h e
analysis of the data, since plot size is now also a random variable.

It is true that a simple random sample of strips will provide an unb iased
estimate of the total number of objects on the study area. The a p p r o p r i a t e
random variable is the total number on each strip, and the ca lcu la t ions
proceed as previously described for simple random sampling of a f i n i t e
population (the total number of possible sample strips).  However, such a
theoretically correct result is of almost no practical interest in dealing w i t h
natural populations, just because such populations exhibit high va r i ab i l i t y
even with efficient methods of sampling. We thus cannot afford to bring i n
any further variability. Ratio methods can conveniently be used to resolve t h e
problem simply by regarding the area of each sample strip as Xi, so that XT i s
the total area of the study region, and letting Yi represent the total number o f

objects on each sample plot.  We then have that  R̂  estimates  the a ve r a g e

density (number per unit area) observed in the sample, and  Y
^

 R is an es t imate
of the total number of objects on the entire study area.

The ratio estimate is biased, but the bias is considered unimportant f o r
large samples.  In this case, a rule of thumb is n of at least 30, and t h e
coefficients of variation of the means of X and Y should both be less than 0.10
(Cochran, 1977:153). Stratification and ratio estimation may serve roughly t h e
same purposes, and it is likely that an effective stratification could be ob ta ined
through the use of the auxiliary variable X.  Thus in the example given above,
one could stratify the study area into blocks such that the length of po ten t ia l
sample transect strips is about constant in each stratum. However, the r a t i o
method provides a "natural" approach in this instance, and is thus t h e
appropriate choice.

The ratio estimate effectively assumes the relationship between Y and X
to be Y = RX + e, where e represents an "error" component and R is a n
unknown constant.  In some instances it may not be reasonable to assume t h a t
the relationship goes through the origin, so that a regression estimate i s
appropriate.  This method is also biased, so that large samples are g e n e r a l l y
recommended. Details are available in Cochran (1977) , Thompson (1992), a n d
many other texts on sampling. Before undertaking to use the ratio o r
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regression techniques, an investigator should have some p r e l i m i n a r y
observations (or good general knowledge) that indicate a relationship b e t w e e n
the variable of primary interest (y) and an auxiliary variable (x). A first s t ep
it plot the data and to note whether the regression line clearly does not g o
through the origin. If this is the case, then it is advisable to look i n t o
regression estimation, rather than using ratio methods. Occasionally t h e r e
may be more than one useful auxiliary variable and it is then possible to u s e
multiple regression.

4.13 Variance of ratio estimates

An estimate of the variance of a ratio is given by:
                                                 N

                       V(R^  ) =
.
 
1  -  f

nX
_2

  [Σ (Yi -  R̂ Xi)2/(N-1)]                                              (4.17)  

                                                i=1
 Here f again represents the finite population correction, and may b e
neglected if n/N is less than about 5 to 10 percent.  N is the total number o f

units in the population, n, the number in the sample, and X
_
  the popu la t ion

mean of the auxiliary variate.  Note that the summation runs over the e n t i r e
population, so that this is an approximation to the "true" variance, and it w i l l
in turn have to be estimated by a quantity that can be calculated from a
sample; that is, we replace the quantity in the right-hand brackets by samp le
data, getting:
                                                           n

                              s2( R̂ ) =
.
 
1  -  f

nX
_2

  [ Σ  (yi  -  R̂ xi )2/(n-1)]                                     (4.18)

                                                         i=1

When interest is in the mean or total of Y, the estimates are as given before:
and variances can be calculated from Equation (4.17) by recalling the rule t h a t

V(aR) = a2V(R), where the constant a is now either X
_
   or NX

_
  , since both o f

these quantities are assumed known, and thus play the part of cons tan ts .
Calculation of an estimate of V(YT ) is easier in the following equivalent form:

                               s2( Y
^

 R ) =
.
 
N(N-n)
n ( n - 1 )   [Σyi2 + R̂ Σxi2 -2 R̂ Σyixi]                        (4.19)

Note that this is the variance for estimating a total.

Since it is advisable to check that the coefficients of variation of t h e
means of Y and X are less than 0.10, another form for calculation of va r i ab i l i t y
is:

                               [c.v.(Y
^

 R)]2 = 
s2(Y

^
R)

Y
^

R 2 
   = 

1-f
n   [cyy + cxx -2cyx]                      (4.20)  

 where cxx, cyy , and cyx are the coefficients of variation of y, x and t h e
analogously defined cross-product term:
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                                                cyx = 
Σyx - ny

_
x
_

( n - 1 ) y
_

x
_  

Readers who refer to Cochran (1977) should note that he used the coe f f i c ien t
of variation of the mean, e.g., cyy / n .                      

The squared coefficient of variation of YR is often termed the re l a t i ve
variance, and can be used to calculate variances of any of the three est imates
of interest (the coefficient of variation, being a relative quantity, has t h e

same value for Y
^

 R, R̂ , or R̂ T).
Confidence limits can be obtained as before:

                                       Y
^

 T + zs(Y
^

 T)     or   R̂  +    zs(R̂ )  

Example 4.6 Ratio corrections for variable plot size

A numerical example of corrections for different lengths of a
strip-transect is given by Norton-Griffiths (1975).  The data are those
from an aerial survey for several species of African "game".  Only
wildebeest are considered here.  The data are as follows:

                                                   xi                          yi
Transect                           Area (km                 2)            No.                     coun ted                      

        1       8.2                 58
        2       13.7                44
        3       25.8    175
        4        25.2  141
        5       21.9    151
        6        20.9               144
        7        23.0    131
        8        19.2    135
        9       21.4    104
       10      17.5                111
       11      19.2                130
       12      20.8                136
                                               _______               ________
       Totals                               236.8             1460

The total area of the study region was 2829 km2, so the population
estimate is:

             Y
^

 R =   
Σyi
Σxi

  XT   = 
1460
236.8  2,829 = 17,440 wildebeest.

There were 126 possible strips in the area, so that N = 126, n = 12, and
calculations from Eq (4.19) are:

  s2( Y
^

 R ) =
.
 
N(N-n)
n ( n - 1 )   [Σyi2 + R̂ Σxi2 -2 R̂ Σyixi ]
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                = [126(114)/12(11)][193,262 +(6.16)2 4,935 - 2(6.16)30,561]
                = 436,580.
The standard error is (436,580)1/2 = 66l, which is quite small compared
to the estimate.

It may be noted that the sample size (12) is a good deal less than
the 30 recommended as a rule of thumb for using ratio estimation.
However, this very likely is an instance where the ratio estimate is
nearly optimal, i.e., the relationship goes through the origin, and the
variance of the counts likely increases with the area of the transects.
Hence, it seems quite reasonable to neglect the n = 30 rule.  Density
per unit area is estimated by:

R
^
 = 1460/236.8 = 6.16 wildebeest per km2.

4.14 Double sampling

The major problem with ratio estimation in ecological studies is just t h a t
there are various situations where the method is potentially useful, but a to ta l
for the auxiliary variable is not known exactly.  Many of these situations do
not seem to fit neatly into the present methodology of survey sampling, but i t
does seem that double sampling comes close enough to provide a use fu l
framework for examining the problems and a useful starting place for m u c h -
needed research.  The basic idea is just that of the ratio estimation scheme.  We
have a random variable of primary interest (Y) and an auxiliary variable (X)
known to be well-correlated with Y.  The missing item is a known total for t h i s
auxiliary variable (XT ) .

In the instances of interest here, measurements of the aux i l i a r y
variable (X) are either very inexpensive to obtain, or are readily available f o r
a large sample taken over the study region.  A convenient example is that used
to describe ratio estimation; the use of strip transects.  We now suppose that t h e
total area of the region under study is not known.  If the area is mapped, t h e n
it is obviously an inexpensive process to make a large number o f
measurements of the lengths of potential transect lines from the map.  One c a n
thus come very close to estimating the total area (XT) by working with t h e
map.  If we denote this estimated total as X'T, then double sampling proceeds i n
just the same manner as ratio estimation, i.e.,

                                          Y
^

 R  = 
Σyi
Σxi

  X'T   

but it is now necessary to make some allowance in variance estimation for t h e
fact that the total(X'T) of the auxiliary variable is not known exact ly .
Eberhardt and Simmons (1987)  conducted some monte carlo studies to sugges t
when double sampling might still be useful under this limitation.

If the study region is mapped, there are usually better ways to m e a s u r e
the total area (e.g., by planimetry).  However, various nontrivial examples c a n
be considered.  The survey may be concerned only with a particular c o v e r
type, which is not mapped.  If the work on the actual sample transect is q u i t e
time-consuming, then it may be well worthwhile to measure only the width o f
the cover-type on a large number of "auxiliary" transects. These widths t h e n
provide an estimate of XT.
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Another situation where double-sampling may be useful is w h e r e
detailed measurements need to be made on individual plots by some t i m e -
consuming process. One example is in estimating total oven-dry biomass of ,
say, nonwoody vegetation.  The time required for clipping, drying, a n d
weighing vegetation severely limits the number of plots that can be so deal t
with.  Double-sampling might well be utilized by using stem counts as a n
auxiliary variable, since this can be done on a rather large sample of plots a t
low cost.  A similar prospect exists when chemical analyses are to be done o n
vegetation, but in this case it may be desirable to use weights on a large samp le
of plots as the auxiliary variable.

An essential feature of these examples is that accurate measurements o f
the auxiliary variable can be made in each instance.  This appears to be t h e
basis for the present theory of double sampling as given, for example, b y
Cochran (1977: Ch.12).  Unfortunately, there are a great many very use fu l
potential applications in ecological studies that do not seem to quite "fit" t h e
existing theory.  These are situations where the auxiliary variable is a n
estimate of some kind, and is subject to either sampling error, bias, or bo th .
The biomass of vegetation example provides a convenient case.  Rather t h a n
stem counts, the investigator may choose to use an ocular estimate of b iomass
on a large sample of plots as an auxiliary variable.  With some experience (bes t
gained by guessing weights on a sample of plots and then clipping a n d
weighing), he may become very proficient at visual estimation.  The p r o b l e m
now is that the auxiliary variable is subject both to the "chance" e r r o r s
inherent in visual estimation and to any persistent tendency to cons is ten t l y
overestimate or underestimate.

Another illustration may be taken from aerial censusing of an ima ls .
Practically all of the available experience shows that aerial observers tend t o
miss a substantial fraction of the animals on a sample unit (very often a s t r i p
transect).  Nonetheless, since aerial surveys can be relatively i nexpens ive ,
efforts may be made to "calibrate" the surveys by using some accurate me thod
to enumerate the number of animals actually on a subsample of the p lo ts
surveyed from the air.  If it can be supposed that these "ground-truth" c o u n t s
are truly without error, then it can be argued that the requirements of doub le-
sampling are met.  The aerial survey now provides the auxiliary variable (X),
while the ground count provides the accurate census (Y) that is wanted .
However, the auxiliary variable (aerial count) is clearly going to be subject t o
sampling errors, due to a large variety of causes.  Hence we no longer h a v e
quite the same situation as when the auxiliary variable can be measu red
without error.  It may be feasible to completely survey the study area from t h e
air.  However, this is still not a known total, as a repeat survey flown u n d e r
identical conditions will without much question yield a different total count.

Many readers will have recognized another problem that was passed b y
above.  This is that the "accurate" measurement (Y) is seldom achievable i n
census work.  Usually the best that can be managed is an estimate that i s
believed to be unbiased, but is clearly subject to sampling error.  We thus h a v e
both Y and X subject to sampling errors.  This circumstance may bring in some
major problems in statistical analysis.  These problems are p a r t i c u l a r l y
difficult in regression analysis, and remain unresolved for a number o f
circumstances of importance to ecologists and biologists.  Ricker (1973)
reviewed the situation for problems in fisheries research and management.
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There is thus a need to exercise some caution in applying doub le
sampling in situations where the auxiliary variable is subject to s a m p l i n g
errors, particularly when regression equations are used.  In many p rac t i ca l
applications in ecology it seems that the ratio approach may be q u i t e
satisfactory so we will usually rely on it here.

If it is clear that the relationship does not pass through the origin a n d
if the variance appears relatively constant around a regression line, then it i s
likely that the regression method should be used.  However, in the many cases
where it is necessary to assume sampling errors in the auxiliary variable, t h e
usual elementary textbook test for significance of the intercept cannot b e
trusted.  Hence it may be best to depend on judgements as to the nature of t h e
relationship and the pattern of variability in choosing between ratio a n d
regression methods.

4.15 Cluster sampling and subsampling

Cluster samples are likely to be useful in field studies whenever the i t e m
of interest is primarily associated with some natural sampling unit.  A n
example might be some species of insect found only on a particular species o f
plant.  Any interest in enumerating the insects, or in studying some o t h e r
measurement, such as the percent of insects parasitized, requires attention t o
the fact that they come in clusters.  In point of fact, this distinction is o f t e n
ignored in practice, and it can be safely said that measures of va r i ab i l i t y
obtained without considering the clustering effect will usually be v e r y
seriously underestimated. Of course, in the example here described one m i g h t
reasonably use a ratio estimate, counting the number of plants and s a m p l i n g
some part of them for insect abundance.

In some cases it is possible to deal with clusters that are all comprised o f
the same number of individual sampling units.  This is a natural way t o
approach large-scale area samples, where the "primary sampling unit" may b e
taken to be a square mile (section).  One may want to use much smaller p lo ts
(square-meter or 0.01 ha, perhaps) for the actual measurements, but t o
enumerate the variable of interest on several such plots in each square m i l e
in the sample.  One approach is then to draw a random sample of n s q u a r e
miles from the overall area, and to locate m plots (the subsample) in each o f
the selected primary units.  This is usually termed two-stage sampling. A n
important consideration in such schemes is determining how m a n y
subsamples (m) and the total number (n) of primary units to take to m in im ize
the overall variance (or maximize precision) for a fixed over-all cost.

We will not attempt to detail the procedures for optimum use o f
subsampling methods, but it is worth mentioning one scheme for ca l cu la t i ng
the overall variance of an estimate, and thus confidence limits.  This is just t o
use the subsample results for each primary sampling unit to estimate a tota l
for that unit.  That is, if there are m plots in each unit, one just obtains t h e
total for those m plots and multiplies it by the reciprocal of the s a m p l i n g
fraction to get an estimate for the primary unit. The primary unit totals c a n
then be used directly as random variables to compute a variance for t h e
survey total.  This variance will reflect both components of variability -- t h a t
for subsampling (within primary units) and that for differences a m o n g
primary sampling units.  What one loses, of course, is any information on t h e
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optimum subsampling rate.  The same scheme can be used when the c lus te rs
(primary units) are of different sizes (i.e., contain different numbers o f
sampling units, as, for example trees in woodlots).  The shortcoming here i s
that if the clusters vary considerably in size, that difference will c o n t r i b u t e
greatly to the overall variance. This point is most important if there i s
additional information on the cluster sizes in the population, but as w a s
mentioned above, one might then be able to use ratio methods.

Subsampling schemes are often conveniently used to c o m b i n e
systematic and random sampling.  In the example above of randomly selected
sections (square miles) which are then subsampled, it is often possible t o
reduce the labor involved if the primary units (sections) are selected a t
random (usually in a stratified sampling plan) and a series of plots located
systematically along a transect within each section as subsamples.  It is h i g h l y
desirable that the transect starting points be randomly selected to avoid a n y
bias due to edge effects or such things as old fencelines in the sections.

Subsampling schemes can involve several stages, and va r i ous
complexities of estimation.  One might for example, use a stratified r a n d o m
sample of square miles, locate subsampling plots in each randomly d r a w n
section, and then elect to examine only a random sample of individual p l a n t s
on each plot for the variable of interest, which might in turn in v o l v e
measurements subject to error.  Obviously, the statistical analysis of such da ta
can be quite complicated.  One way to simplify matters a great deal is to r e s o r t
to jackknifing or bootstrapping.

Sampling in two (or more) stages is also worth considering when t h e r e
is uncertainty about the accuracy of the method for making measurements, a s
is so often the case in estimating the abundance of animal populations.  It i s
usually the case that population density will vary considerably over l a r g e
areas, and the investigator may have a reasonably good notion of how dens i t y
varies with habitat and so on (or this may be a major item of interest).  It i s
then logical to use a stratified random sampling scheme to locate p r i m a r y
sampling units on which the actual measurements of density will be at tempted.
This does not, of course, reduce any uncertainty in the actual m e a s u r e m e n t
method, but it does keep the area differences from compounding matters.

Example 4.7 A cluster sampling example

One simple example of cluster sampling was mentioned in Example
4.5 (stratified sampling).  The "primary sampling units" (square miles)
were selected at random, and then subsampled with a cluster of eight
small plots.  All  that is needed for analysis of the resulting data is
just to multiply the total for the eight subsamples by a "raising
factor" or "blow-up factor", which is simply the reciprocal of the
sampling rate.  In the example used, the individual plots were each 1/50
of an acre, hence the necessary adjustment factor is:  640/(8/50) =
4000. Once this is done, the remaining analysis proceeds as though no
subsampling had taken place.  Skeptics may need to do a little algebraic
manipulation at this point.  When subsampling rates are not constant,
things become somewhat more complicated, and a sample survey text should
be consulted for details. However, if the subsampling rate does not vary
greatly, the same procedures can be used without elaboration.  All that
happens is that one overestimates the variance, in most situations.  But
if the subsampling rate varies considerably and/or is related to size of
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the primary sampling unit, then by all means consult a textbook on
sampling or a statistician.

Supposing constant size of the primary sampling unit, and a
constant subsampling unit (the case most likely in ordinary
applications) the main question to be settled is "What is the best
subsampling rate?".  As usual, answers depend on relative costs.  That
is, a particular effort (hence cost) is required to survey an individual
sampling unit (i.e., one plot in the example), while a separate cost is
engendered by the time and travel going from one primary sampling unit
to the next.  For a given total expenditure for the entire survey, the
optimum subsampling rate is that which minimizes the overall variance
given the above two costs

Since natural populations exhibit a somewhat frustrating tendency
for variances to change nonlinearly with size of the sampling unit (plot
size), a simple equation for subsampling rate is not available. What's
really needed is a "variance law", i.e., a relationship between plot
size and variance.  To obtain such a relationship, one has to run a
special study using several plot sizes.  Then it becomes possible to
incorporate costs and get on with the business at hand by consulting
Cochran (1977, Ch. 9).  As we noted earlier, the kind of measurement
(weights, counts, etc.) and the organism under study influence the
"variance law" substantially.  Hence there are two choices open at this
point.  One is to run a fairly expensive preliminary field study, and
thus to manufacture your own "variance law".  The second choice is to
resort to the literature in the appropriate field, seeking papers in
which several different plot sizes have been used.  A number of
references along these lines appear in Eberhardt (1978a).  However, it
is clear that this is an area needing rather more research attention in
ecology.

Example 4.8 Cluster sampling involving proportions

One of the commonest errors in the ecological literature is an
uncritical acceptance of the binomial distribution as an appropriate
model for analysis of proportions in data collected in clusters.  It is
the appropriate model if, and only if, a simple random sample of
individuals can be obtained.  In practical problems one almost always
collects observations as clusters.  When this is the case, the
clustering effect must be taken into account in order to obtain a
meaningful variance.  Very rarely do we encounter a population so well
mixed that clusters are indeed equivalent to simple random samples, so
that such an example is likelyto be more of a curiosity than anything
else.

The simplest way to deal with cluster sampling for proportions is
to treat the individual observations as random variables.  In this
instance, the appropriate form of the ratio estimator is:
                                                     n

                                         p
_

  = 
1
n    Σ  

yi
xi

 

                                                    i=1
 where yi denotes the number of individuals in the ith cluster
possessing the attribute of interest, and xi is the total number of

individuals in the ith cluster, while n is the number of clusters.
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The appropriate variance estimate here is (Cochran 1977:65):

                                    V(p
_

 ) = 
Σ(pi - p

_
)2

n ( n - 1 )  

 where pi = yi/xi, i.e., the observed proportion in the ith cluster.
(We here neglect the finite population correction which can be inserted
as a multiplier (1-f) if needed).

An interesting set of data to illustrate behavior of proportions
in clusters comes from a paper by Johnson and Chapman (l968).  This was
a study to estimate the number of fur seal pups on a "rookery" on the
Pribilof Islands, off Alaska. A large sample (4,965) of pups were marked
(in groups) and then clusters of100 were examined (for the proportion
marked) at randomly selected sampling stations.  The estimate of the
total number of pups on the rookery was obtained from

                                       N
^

 1 = 
M
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_

)
 

where N is the population estimate, M is the number marked (4,965) and p
_
  

is the mean proportion marked, calculated as in the above example.

Two ways of estimating the variance were used.  One is based on
the "delta method", and is:
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 where  v(p
_
 )  is obtained as in the above example.  The second method

is that of "interpenetrating" sampling, in which the sample is
subdivided randomly into a number of subsamples. A separate estimate of

the population size N̂ i is made from each subsample and these are then
averaged for the final estimate, i.e.:
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 and:
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It should be noted that the two estimates of the total population will
not necessarily be identical, nor will the variance estimates be the
same for the two methods.
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The observed numbers of marked pups in clusters of 100 (recorded
on two sampling dates) were:

 August 26, 1961              2, 0, 1, 6, 4, 33, 62, 49, 55, 38, 52, 77,               
(25 samples)                   85, 54, 27, 17, 3, 3, 3, 2, 2, 1, 0, 0, 4.

August 28, 1961               0, 0, 0, 4, 0, 0, 0, 12, 4, 8, 60, 48, 72,  72, 76, 80, 56, 44,
(58 samples)                    50, 56, 56, 28, 60, 36,44, 44, 28, 52, 72, 28, 72, 60, 60, 84, 

                   76, 52, 84, 48, 52, 60, 40, 12, 8, 12, 4, 8, 44, 16, 0, 8, 0, 0, 
                   4, 12, 8, 0, 0, 0.

 The interpenetrating or replicated samples were defined as
follows:

Subsamples 1, 2, 3:  Every third observation of August 26,
beginning with observations 1, 2, 3, respectively.

Subsamples 4-10:     Every seventh observation beginning with
observations 1, 2, 3, 4, 5, 6, 7, respectively.

Since there were 25 observations on 26 August, this procedure yields
subsamples of size 9, 8, and 8, respectively, while the 58 observations
on 28 August yield two sets of size 9 and 5 of size 8.  These data lead
to the following estimates for the interpenetrating sampling:

Subsample      Ni                    

        1       20,497
        2       24,219
        3       20,060
        4       17,455
        5       16,674
        6       17,732
        7       14,391
        8       12,490
        9       13,066
        10      14,821
                 __________
Total        171,405

 Averaging gives N
^
 2 = 17,140  with v(N

^
 2) = 1,353,000, while N

^
 1 =

16,550 with v(N
^
 1) = 2,950,000.

4.16. Some additional sampling techniques

There are a number of additional techniques students should know
about. Multistage sampling was used in Examples 4.4 and 4.5 where subsamples
of the primary sampling units were actually enumerated. As pointed out there,
it isn’t necessary to consider the subsampling in obtaining a variance
estimate. All that is needed is to use the subsample data to make estimates for
the primary sampling units and treat those values exactly as one would if the
entire unit had been tallied. However, it may be desirable to consider the
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“within sampling unit” variability in order to do a more efficient job of
designing the survey. This requires more complex equations which are given
in many books on sampling [e.g., Cochran (1977), Thompson (1992)].

Another useful technique uses unequal probabilities in selecting
samples. This approach is exemplified by the line intercept technique
described in Chapter 5, and may be useful in any circumstance where the
probability of selection may vary from unit to unit, either naturally or for
convenience or improved efficiency. Texts or references to sampling
techniques may refer to the Hansen-Hurwitz estimator. This is a method for
using unequal sampling probabilities (see any of the sampling texts for
detai ls).

A relatively recent development is known as adaptive sampling. This
may be a very useful approach when items of interest tend to be clustered, but
in such a manner that there is no readily defined unit that contains all of the
elements of a cluster. The technique provides a means for expanding the
sampled area around primary units where a concentration of the items of
interest is encountered, without biasing the results (which occurs with
certainty if one simply expands the area to include more individuals). Details
appear in Part IV of Thompson (1992) and a more extensive (and more
theoretical) treatment appears in Thompson and Seber (1996).

Another potentially valuable approach is generally known as “kriging”
after the South African mining engineer, Krige, who developed the initial
approach in searching for profitable sites for mining for gold or other
minerals. The approach is now used in petroleum exploration. In both of these
examples drilling exploratory holes can be very expensive and time-
consuming. The methodology thus utilizes spatial correlations among the
available samples to estimate abundance or density on an area. A natural
descriptive phrase thus is “spatial sampling”, and there are many instances
where this may be useful in ecology. Thompson (1992:Part V) gives a useful
summary and references to the extensive literature.

4.17 Exercises

4.17.1 Using a table of random numbers

Drawing a sample with the aid of a table of random numbers is not v e r y
complicated, but the student should try drawing a sample of 10 ind iv idua ls
from a population of 20, and another sample of 10 from a population of 1000
(the "populations" can be just the numbers 1-20, and 1-1000).  Two a p p r o a c h e s
to starting points in the table may be considered.  One is to somehow make a
"random" start, (e.g., by closing one's eyes and touching a point on a page t o
select random coordinates in the table for a starting point) the other is to m a r k
off sets of digits as they are used, going on through the table as d i f f e r e n t
occasions for its use come up.  The latter course is preferable for r epea ted
surveys of the same areas.  Note that samples of 10 out of a small popu la t ion
(like 20) may yield one or more repetitions of random numbers. Notice, too,
that one has to use a two digit column of numbers, and many must be re jec ted
with a population of 20. This seems to be even more of a problem with t h e
population of 1000, since one should use 4 digits in order to permit the n u m b e r
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1000 to have a chance to be drawn.  However, it is simple to arbitrarily as s i g n
the number 1000 to the 3 digit sequence 000 and thus use three columns (001 t o
999, plus 000 for 1000). When working with EXCEL it is convenient to use t h e
RANDBETWEEN() function, as that avoids the need to use a table of r a n d o m
n u m b e r s .

4.17.2  Determining sample size

Suppose that we want 95% confidence limits of about + 15% for the data i n  
Example 4.1. What sample size is required if N =1000? Calculate sample size f o r
+10% for N = 1000.   

4.17.3 An exercise in allocation

As an exercise in allocation, use the values of  sh2  actually obtained i n
the caribou survey in Example 4.5 to calculate a new allocation and compare i t
with that actually used.  

Another way to guess at the Sh to use for allocation is to assume t h e

coefficient of variation (s/x
-
 )  is constant.  Calculate the c.v.'s for each s t ra tum,

and try a "typical" values for allocations.  Are there substantial d i f f e rences
between the various schemes? Comment on the results.

4.17.4 Computations for mortality survey

Compute y
-
 st and the total mortality estimate for Example 4.4 along w i t h

95% confidence limits.  It is often convenient to use  2[V(y
-
 s t) ] 1 / 2/ y

-
 st a s

"percentage limits"on survey results.  Compute that value and compare it w i t h
the same result for example 4.3.

4.17.5 Stratified sampling in a vegetation study

A survey designed to estimate biomass of non-woody vegetation in a
sagebrush stand (Eberhardt and Rickard 1963) provides an example of a
different approach to stratification and illustrates some of the po ten t ia l
flexibility of sampling methods.  In this example, proportional allocation w a s
used in order to avoid advance preparations other than marking out the a r e a
well enough to avoid recounting individual plants.  Two investigators wo rked
together, one classifying and tallying each sagebrush plant into one of f i v e
strata, while the other checked off each plant on graph paper on w h i c h
certain squares had previously been randomly selected as representing a
plant to be sampled (it was thought that about 1/30 of the bushes should b e
sampled, so three numbers from 1-90 were designated as meaning"sample" a n d
a table of random numbers was used to produce the sampling chart).  When a
"winner" turned up, the bush was subdivided into from two to five parts, a n d
one of the parts was randomly selected.  If that part was too large f o r
weighing, it was subdivided and a random selection again made.  The selected
portion was than clipped, oven-dried and weighed.
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Data from the survey are tabulated below.  The "subsampling f rac t ions "
show approximately how much of an individual plant was actually removed.
In the first record in the table, about 1/4 was removed, while in the second
case there were two sub-divisions, and roughly 1/10 [(1/5) times (1/2)] w a s
actually removed. Thus to estimate total weight for a given plant one would
multiply by 4 or 10.  Stratum IV contained the largest plants and the two p l a n t s
actually sampled were sampled at rates of 1/56 and 1/28, respectively.  Of
course the divisions were not exact but any errors in subdividing will e n t e r
into overall variance of the survey estimates.  There was actually a f i f t h
stratum, but only one plant was sampled, so it has been left out of t h e
tabu la t ion .

As an exercise, the student should work out an estimate of mean o v e n -
dry material and its variance for the entire sagebrush stand using the data i n
Table 3.l.  Calculate an optimum allocation for a sample of the size used h e r e
(25), and compare with the proportional allocation (neglect the fpc). Calculate
coefficients of variation. Comment on the results.

 Results of stratified sampling of a sagebrush stand.
 Stratum    Number of bushes        Subsampling           Oven-dry               
                    in stratum                    fractions for           weight of                     
                                                           sampled bushes      sample (g)                                                 
 I     169     1/4     0.60
               1/5,1/2  1.90
               1/2,1/2  2.05
                         1/2,1/2  1.05
               1/2      1.20

 II    309                  1/4,1/2 1.60
                1/5,1/4 3.20
                1/5,1/5    1.45
                          1/3,1/3 4.05
               1/3   2.05
               1/3,1/2 1.45
                1/4,1/4 2.40
               1/3,1/2 1.65
                1/3,1/4 0.60

 III   301                 1/5,1/4 1.85
                1/5,1/2  2.85
                1/5,1/4  7.15
               1/5,1/3  2.15
                1/3,1/4  4.10
                1/4,1/5  3.50
                1/4,1/3  5.25
                1/5,1/3  5.60
                1/3,1/3  1.55

IV     57                   1/8,1/7 6.05
                1/7,1/4 3.60
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4.17.6 Try jackknifing to calculate a standard error for Example 4.6. Compare
your result with that given in the Example (661). Also, calculate bias estimates

for R̂  using jackknifing and bootstrapping. Use 200 bootstraps. There is only
one jackknife estimate of bias available, but you can run the bootstrap
repeatedly and see how the bias changes. Comment on your results. Don’t
forget to consider the magnitude of the bias relative to the estimate.

4.17.7  Bootstrap the data for August 26 (n=25) from Example 4.8 and compare
your results with the ratio estimators N-hat(2) and V(N-hat(2)) given in the
example, and with the binomial variance estimate given below. Do 200
bootstraps and calculate Bias(boot) from eq.(3.2). Run repeatedly and see how
Bias(boot) varies. Is there an indication of appreciable bias? Recall that when
simple random sampling of individuals is assumed:
                                 v(p) = pq/(n-1)

 where n here is 2500.  The difference in the two estimates reveals why the
binomial formula should never be used with cluster samples.

4.17.8  Try jackknifing the "interpenetrating sampling" results of Example 4.8,
and compare the variance you get with that given in the example. Explain the
resu l ts .


